Главная · Поиск книг · Поступления книг · Top 40 · Форумы · Ссылки · Читатели

Настройка текста
Перенос строк


    Прохождения игр    
Demon's Souls |#13| Storm King
Demon's Souls |#11| Мaneater part 2
Demon's Souls |#10| Мaneater (part 1)
Demon's Souls |#9| Heart of surprises

Другие игры...


liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня
Rambler's Top100
Образование - Различные авторы Весь текст 991.22 Kb

Программирование в теоремах и задачах

Предыдущая страница Следующая страница
1 ... 63 64 65 66 67 68 69  70 71 72 73 74 75 76 ... 85
угольника  A(k,l)  и,  следовательно,  стороной  одного  из тре-
угольников,  на  которые он разрезан. Противоположной вершиной i
этого треугольника может быть любая из вершин k+1,...,l-1, и ми-
нимальная стоимость разрезания может быть вычислена как

    min {(длина хорды k--i)+(длина хорды i--l)+a(k,i)+a(i,l)}

по всем i=k+1,..., i=l-1. При этом надо учесть,  что  при  i=k+1
хорда k--i - не хорда, а сторона, и ее длину надо считать равной
0 (по стороне разрез не проводится).

     Составив таблицу для a(k,l) и заполняя ее в порядке возрас-
тания числа вершин (равного l-k+2), мы получаем  программу,  ис-
пользующую память порядка n*n и время порядка n*n*n (однократное
применение  рекуррентной  формулы  требует выбора минимума из не
более чем n чисел).

     8.1.4. Матрицей размера m*n называется прямоугольная табли-
ца из m строк и n столбцов, заполненная числами. Матрицу размера
m*n  можно умножить на матрицу размера n*k (ширина левого сомно-
жителя  должна  равняться  высоте правого), и получается матрица
размером m*k. Ценой такого умножения будем считать  произведение
m*n*k (таково число умножений, которые нужно выполнить при стан-
дартном способе умножения - но сейчас это нам не важно). Умноже-
ние матриц ассоциативно, поэтому произведение n матриц можно вы-
числять в разном порядке. Для каждого порядка подсчитаем суммар-
ную цену всех матричных умножений. Найти минимальную цену вычис-
ления произведения, если известны  размеры  всех  матриц.  Число
действий должно быть ограничено многочленом от числа матриц.

     Пример.  Матрицы  размером  2*3, 3*4, 4*5 можно перемножать
двумя способами. В первом цена равна 2*3*4 + 2*4*5 = 24 +  40  =
64, во втором цена равна 3*4*5 + 2*3*5 = 90.

     Решение.  Представим  себе,  что первая матрица написана на
отрезке [0,1], вторая - на отрезке [1,2],..., s-ая - на  отрезке
[s-1,s]. Матрицы на отрезках [i-1,i] и [i,i+1] имеют общий  раз-
мер, позволяющих их перемножить. Обозначим его через d[i]. Таким
образом, исходным данным в задаче является массив d[0]..d[s].
     Через a(i,j) обозначим минимальную цену вычисления произве-
дения  матриц на участке [i,j] (при 0<=i', n);
    | end else begin
    | | s:=6-m-n; {s - третий стержень: сумма номеров равна 6}
    | | move (i-1, m, s);
    | | writeln ('сделать ход', m, '->', n);
    | | move (i-1, s, n);
    | end;
    end;

Видно, что задача "переложить i верхних дисков с m-го стержня на
n-ый"  сводится  к трем задачам того же типа: двум задачам с i-1
дисками и к одной задаче с единственным диском. Выполняя эти за-
дачи, важно не позабыть, что еще осталось сделать.

     Для этой цели заведем стек отложенных  заданий,  элементами
которого будут тройки . Каждая такая тройка интерпретиру-
ется  как  заказ  "переложить i верхних дисков с m-го стержня на
n-ый". Заказы упорядочены в соответствии с требуемым порядком их
выполнения: самый срочный - вершина стека. Получам  такую  прог-
рамму:

    procedure move(i,m,n: integer);
    begin
    | сделать стек заказов пустым
    | положить в стек тройку 
    | {инвариант: осталось выполнить заказы в стеке}
    | while стек непуст do begin
    | | удалить верхний элемент, переложив его в 
    | | if j = 1 then begin
    | | | writeln ('сделать ход', p, '->', q);
    | | end else begin
    | | | s:=6-p-q;
    | | |      {s - третий стержень: сумма номеров равна 6}
    | | | положить в стек тройки , <1,p,q>, 
    | | end;
    | end;
    end;

(Заметим,  что  сначала в стек кладется тройка, которую надо вы-
полнять последней.) Стек троек может быть  реализован  как  стри
отдельных  стека.  (Кроме  того, в паскале есть специальный тип,
называемый "запись", который может быть применен.)

     8.2.2. (Сообщил А.К.Звонкин со ссылкой на Анджея  Лисовско-
го.)  Для  задачи  о ханойских башнях есть и другие нерекусивные
алгоритмы. Вот один из них: простаивающим стержнем  (не  тем,  с
которого  переносят, и не тем, на который переносят) должны быть
все стержни по очереди. Другое  правило:  поочередно  перемещать
наименьшее кольцо и не наименьшее кольцо, причем наименьшее - по
кругу.

     8.2.3. Использовать замену рекурсии стеком отложенных зада-
ний в рекурсивной программе печати десятичной записи целого чис-
ла.

     Решение. Цифры добываются с конца и закладываются в стек, а
затем печатаются в обратном порядке.

     8.2.4. Написать  нерекурсивную  программу,  печатающую  все
вершины двоичного дерева.

     Решение. В этом случае стек отложенных заданий будет содер-
жать  заказы двух сортов: заказ напечатать (в свое время) данную
вершину и заказ напечатать все вершины поддерева с данным корнем
(при этом nil считается корнем пустого дерева).  Таким  образом,
элемент стека есть пара: <тип заказа, номер вершины>.
     Вынимая элемент из стека, мы либо сразу исполняем его (если
это  заказ первого типа) либо помещаем в стек три порожденных им
заказа - в одном из шести возможных порядков.

     8.2.5. Что изменится, если требуется  не  печатать  вершины
двоичного дерева, а подсчитать их количество?

     Решение.  Печатание  вершины  следует заменить прибавлением
единицы к счетчику. Другими  словами,  инвариант  таков:  (общее
число  вершин)  = (счетчик) + (сумма чисел вершин в поддеревьях,
корни которых лежат в стеке).

     8.2.6. Для некоторых из шести возможных  порядков  возможны
упрощения, делающие ненужным хранение в стеке элементов двух ви-
дов. Указать некоторые из них.

     Решение. Если требуемый порядок таков:
        корень, левое поддерево, правое поддерево,
то  заказ  на печатание корня можно не закладывать в стек, а вы-
полнять сразу.
     Несколько более сложная конструкция применима для порядка
        левое поддерево, корень, правое поддерево.
В этом случае все заказы в стеке, кроме самого первого  (напеча-
тать поддерево) делятся на пары:
    напечатать вершину x, напечатать правое поддерево x
(т.е.  поддерево с корнем в правом сыне x). Объединив эти пары в
заказы специального вида и введя переменную для отдельного  хра-
нения первого заказа, мы обойдемся стеком однотипных заказов.
     То же самое, разумеется, верно, если поменять местами левое
и правое - получается еще два порядка.

     Замечание. Другую программу печати всех вершин дерева можно
построить на основе программы обхода дерева, разобранной в соот-
ветствующей  главе.  Там  используется команда "вниз". Поскольку
теперешнее представление дерева с помощью массивов l и r не поз-
воляет  найти  предка  заданной вершины, придется хранить список
всех вершин на пути от корня к  текущей  вершине.  Cмотри  также
главу об алгоритмах на графах.

     8.2.7.  Написать  нерекурсивный  вариант  программы быстрой
сортировки. Как обойтись  стеком,  глубина  которого  ограничена
C*log n, где n - число сортируемых элементов?

     Решение.  В  стек кладутся пары , интерпретируемые как
отложенные задания на сортировку соответствующих участков масси-
ва. Все эти заказы не пересекаются, поэтому размер стека не  мо-
жет  превысить n. Чтобы ограничиться стеком логарифмической глу-
бины, будем придерживаться такого правила: глубже в  стек  поме-
щать больший из возникающих двух заказов. Пусть  f(n)  -  макси-
мальная  глубина стека, которая может встретиться при сортировке
массива из не более чем n элементов таким способом. Оценим  f(n)
сверху таким способом: после разбиения массива на два участка мы
сначала сортируем более короткий (храня в стеке про запас) более
длинный, при этом глубина стека не больше f(n/2)+1, затем сорти-
руем более длинный, так что

      f(n) <= max (f(n/2)+1, f(n-1)),

откуда очевидной индукцией получаем f(n) = O(log n).

     8.3. Более сложные случаи рекурсии.

     Пусть функция f с натуральными аргументами и значениями оп-
ределена рекурсивно условиями
        f(0) = a,
        f(x) = h(x, f(l(x))),
где a - некоторое число, а h и l -  известные  функции.  Другими
словами,  значение функции f в точке x выражается через значение
f в точке l(x). При этом предполагается, что для любого x в пос-
ледовательности
        x, l(x), l(l(x)),...
рано или поздно встретится 0.
     Если  дополнительно  известно,  что l(x) < x для всех x, то
вычисление f не представляет  труда:  вычисляем  последовательно
f(0), f(1), f(2),...

     8.3.1.  Написать  нерекурсивную  программу вычисления f для
общего случая.

     Решение. Для вычисления f(x) вычисляем последовательность
        l(x), l(l(x)), l(l(l(x))),...
до появления нуля и запоминаем ее, а затем вычисляем значения  f
в точках этой последовательности, идя справа налево.

     Еще более сложный случай из следующей задачи вряд ли встре-
тится  на  практике  (а  если  и встретися, то проще рекурсию не
устранять, а оставить). Но тем не менее: пусть функция f с нату-
Предыдущая страница Следующая страница
1 ... 63 64 65 66 67 68 69  70 71 72 73 74 75 76 ... 85
Ваша оценка:
Комментарий:
  Подпись:
(Чтобы комментарии всегда подписывались Вашим именем, можете зарегистрироваться в Клубе читателей)
  Сайт:
 
Комментарии (1)

Реклама