Главная · Поиск книг · Поступления книг · Top 40 · Форумы · Ссылки · Читатели

Настройка текста
Перенос строк


    Прохождения игр    
Demon's Souls |#13| Storm King
Demon's Souls |#11| Мaneater part 2
Demon's Souls |#10| Мaneater (part 1)
Demon's Souls |#9| Heart of surprises

Другие игры...


liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня
Rambler's Top100
Образование - Различные авторы Весь текст 991.22 Kb

Программирование в теоремах и задачах

Предыдущая страница Следующая страница
1 ... 62 63 64 65 66 67 68  69 70 71 72 73 74 75 ... 85
связной компоненте).

     Решение.  Программа  в  процессе работы будет "закрашивать"
некоторые вершины графа. Незакрашенной частью графа будем  назы-
вать то, что останется, если выбросить все закрашенные вершины и
ведущие в них ребра. Процедура add(i) закрашивает связную компо-
ненту  i в незакрашенном графе (и не делает ничего, если вершина
i уже закрашена).

     procedure  add (i:1..n);
     begin
     | if вершина i закрашена then begin
     | | ничего делать не надо
     | end else begin
     | | закрасить i (напечатать и пометить как закрашенную)
     | | для всех j, соседних с i
     | | | add(j);
     | | end;
     | end;
     end;

Докажем, что эта процедура действует правильно (в предположении,
что рекурсивные вызовы работают правильно). В самом деле,  ниче-
го, кроме связной компоненты незакрашенного графа, она закрасить
не  может. Проверим, что вся она будет закрашена. Пусть k - вер-
шина, доступная из вершины  i  по  пути  i-j-...-k,  проходящему
только по незакрашенным вершинам. Будем рассматривать только пу-
ти,  не  возвращающиеся  снова  в i. Из всех таких путей выберем
путь с наименьшим j (в порядке просмотра соседей в цикле в  про-
цедуре).  Тогда  при  рассмотрении предыдущих соседей ни одна из
вершин j-...-k не будет закрашена (иначе  j  не  было  бы  мини-
мальным) и потому k окажется в связной компоненте незакрашенного
графа к моменту вызова add(j). Что и требовалось.
     Чтобы установить конечность глубины рекурсии, заметим,  что
на каждом уровне рекурсии число незакрашенных вершин уменьшается
хотя бы на 1.
     Оценим число действий. Каждая вершина закрашивается не  бо-
лее  одного раза - при первым вызове add(i) с данным i. Все пос-
ледующие вызовы происходят при закрашивании соседей - количество
таких  вызовов  не  больше числа соседей - и сводятся к проверке
того, что вершина i уже закрашена. Первый  же  вызов  состоит  в
просмотре  всех  соседей  и  рекурсивных вызовах add(j) для всех
них. Таким образом, общее число действий, связанных  с  вершиной
i, не превосходит константы, умноженной на число ее соседей. От-
сюда и вытекает требуемая оценка.

     7.4.6.  Решить ту же задачу для ориентированного графа (на-
печатать все вершины, доступные из данной по стрелкам; граф  мо-
жет содержать циклы).

     Ответ.  Годится  по  существу  та же программа (строку "для
всех соседей" надо заменить на  "для  всех  вершин,  куда  ведут
стрелки").

     Быстрая сортировка Хоара. В заключение приведем рекурсивный
алгоритм сортировки массива, который на практике является  одним
из  самых быстрых. Пусть дан массив a[1]..a[n]. Рекурсивная про-
цедура  sort (l,r:integer) сортирует участок массива с индексами
из полуинтервала (l,r] (т.е. a[l+1]..a[r]),  не  затрагивая  ос-
тального массива.

     procedure sort (l,r: integer);
     begin
     | if (l = r) then begin
     | | ничего делать не надо - участок пуст
     | end else begin
     | | выбрать случайное число s в полуинтервале (l,r]
     | | b := a[s]
     | | переставить элементы сортируемого участка так, чтобы
     | |   сначала шли элементы, меньшие b - участок (l,ll]
     | |   затем элементы, равные b        - участок (ll,rr]
     | |   затем элементы, большие b       - участок (rr,r]
     | | sort (l,ll);
     | | sort (rr,r);
     | end;
     end;

Перестановка  элементов  сортируемого  участка рассматривалась в
главе о массивах (это можно сделать за  время,  пропорциональное
длине участка). Конечность глубины рекурсии  гарантируется  тем,
что   длина  сортируемого  участка  на  каждом  уровне  рекурсии
уменьшается хотя бы на 1.

     7.4.7. (Для знакомых с основами теории вероятностей). Дока-
зать, что математическое ожидание числа операций при работе это-
го алгоритма не превосходит C*n*log n, причем константа C не за-
висит от сортируемого массива.

     Указание. Пусть T(n) -  максимум  математического  ожидания
числа  операций для всех входов длины n. Из текста процедуры вы-
текает такое неравенство:

     T(n) <= Cn + 1/n [сумма по всем  k+l=(n-1) чисел T(k)+T(l)]

Первый член соответствует распределению  элементов  на  меньшие,
равные  и большие. Второй член - это среднее математическое ожи-
дание для всех вариантов случайного выбора. (Строго говоря, пос-
кольку среди элементов могут быть равные, в правой части  вместо
T(k) и T(l) должны стоять максимумы T(x) по всем x, не превосхо-
дящим  k или l, но это не мешает дальнейшим рассуждениям.) Далее
индукцией по n нужно доказывать оценку T(n)  <=  C'nlog  n.  При
этом   для   вычисления  среднего  значения  x  log  x  по  всем
x=1,..,n-1 нужно интегрировать x lnx по частям как lnx * d(x*x).
При достаточно большом C' член Cn в правой части  перевешивается
за счет интеграла x*x*d(ln x), и индуктивный шаг проходит.

     7.4.8. Имеется массив из n различных целых чисел a[1]..a[n]
и число k. Требуется найти k-ое по величине число в этом  масси-
ве,  сделав  не более C*n действий, где C - некоторая константа,
не зависящая от k.

     Замечание. Сортировка позволяет очевидным  образом  сделать
это  за  C*n*log(n) действий. Очевидный способ: найти наименьший
элемент, затем найти второй, затем третий,..., k-ый требует  по-
рядка  k*n действий, то есть не годится (константа при n зависит
от k).

      Указание.  Изящный  (хотя  практически  и  бесполезный   -
константы слишком велики) способ сделать это таков:
     А. Разобьем наш массив на n/5 групп, в каждой из которых по
5 элементов. Каждую группу упорядочим.
     Б.  Рассмотрим средние элементы всех групп и перепишем их в
массив из n/5 элементов. С помощью  рекурсивного  вызова  найдем
средний по величине элемент этого массива.
     В.  Сравним этот элемент со всеми элементами исходного мас-
сива: они разделятся на большие его и меньшие его (и один равный
ему). Подсчитав количество тех и других, мы узнаем, в  какой  из
этих  частей  должен находится искомый (k-ый) элемент и каков он
там по порядку.
     Г. Применим рекурсивно наш алгоритм к выбранной части.

     Пусть  T(n)  -  максимально  возможное число действий, если
этот способ применять к массивам из не более чем n элементов  (k
может быть каким угодно). Имеем оценку:
     T(n) <= Cn + T(n/5) + T(примерно 0.7n)
Последнее слагаемое объясняется так: при разбиении на части каж-
дая часть содержит не менее 0.3n элементов. В самом деле, если x
-  средний  из средних, то примерно половина всех средних меньше
x. А если в пятерке средний элемент меньше x, то еще два заведо-
мо меньше x. Тем самым по крайней мере 3/5 от половины элементов
меньше x.
    Теперь  по  индукции можно доказать оценку T(n) <= Cn (реша-
ющую роль при этом играет то обстоятельство, что 1/5 + 0.7 < 1).
        Глава 8. Как обойтись без рекурсии.

     Для универсальных языков программирования (каковым является
паскаль)  рекурсия не дает ничего нового: для всякой рекурсивной
программы можно написать эквивалентную программу  без  рекурсии.
Мы  не будем доказывать этого, а продемонстрируем некоторые при-
емы, позволяющие избавиться от рекурсии в конкретных ситуациях.
     Зачем  это  нужно?  Ответ  прагматика мог бы быть таким: во
многих компьютерах (в том числе, к сожалению, и  в  современных,
использующих  так называемые RISC-процессоры), рекурсивные прог-
раммы в несколько раз  медленнее  соответствующих  нерекурсивных
программ.  Еще один возможный ответ: в некоторых языках програм-
мирования рекурсивные программы запрещены. А главное, при удале-
нии рекурсии возникают изящные и поучительные конструкции.

     8.1. Таблица значений (динамическое программирование)

     8.1.1. Следующая рекурсивная процедура вычисляет числа  со-
четаний  (биномиальные коэффициенты). Написать эквивалентную не-
рекурсивную программу.

        function C(n,k: integer):integer;
        | {n,k >=0; k <=n}
        begin
        | if (k = 0) or (k = n) then begin
        | | C:=1;
        | end else begin {0 2.

     8.1.3. Дан выпуклый n-угольник (заданный координатами своих
вершин в порядке обхода). Его разрезают на треугольники диагона-
лями, для чего необходимо n-2 диагонали (докажите  индукцией  по
n). Стоимостью разрезания назовем сумму длин всех использованных
диагоналей.   Найти   минимальную  стоимость  разрезания.  Число
действий должно быть ограничено некоторым многочленом от n. (Пе-
ребор не подходит, так как число вариантов не ограничено многоч-
леном.)

     Решение. Будем считать, что вершины пронумерованы от 1 до n
и  идут  по  часовой стрелке. Пусть k, l - номера вершин, причем
l>k. Через A(k,l) обозначим многоугольник, отрезаемый от  нашего
хордой  k--l.  (Эта  хорда разрезает многоугольник на 2, один из
которых включает сторону 1--n; через A(k,l) мы  обозначаем  дру-
гой.)  Исходный многоугольник естественно обозначить A(1,n). При
l=k+1 получается "двуугольник" с совпадающими сторонами.









Через  a(k,l)  обозначим  стоимость  разрезания   многоугольника
A(k,l) диагоналями на треугольники. Напишем рекуррентную формулу
для  a(k,l).  При  l=k+1  получается  двуугольник, и мы полагаем
a(k,l)=0. При l=k+2 получается треугольник, и в этом случае так-
же a(k,l)=0. Пусть l > k+2. Хорда k--l является стороной  много-
Предыдущая страница Следующая страница
1 ... 62 63 64 65 66 67 68  69 70 71 72 73 74 75 ... 85
Ваша оценка:
Комментарий:
  Подпись:
(Чтобы комментарии всегда подписывались Вашим именем, можете зарегистрироваться в Клубе читателей)
  Сайт:
 
Комментарии (1)

Реклама