Замечание. В третьей альтернативе достаточно было бы увеличивать
одну из переменных k1, l1; вторая добавлена для симметрии.
1.2.17. Решить предыдущую задачу, если известно лишь, что
x[1] <= ... <= x[k] и y[1] <= ... <= y[l] (возрастание заменено
неубыванием).
Решение. Условие возрастания было использовано в третьей
альтернативе выбора: сдвинув k1 и l1 на 1, мы тем самым уменьша-
ли на 1 количество общих элементов в x[k1+1]...x[k] и
x[l1+1]...x[l]. Теперь это придется делать сложнее.
...
end else begin {x[k1+1] = y[l1+1]}
| t := x [k1+1];
| while (k1 k) or (l1 <> l) do begin
| if k1 = k then begin
| | {l1 < l}
| | l1 := l1 + 1;
| | z[k1+l1] := y[l1];
| end else if l1 = l then begin
| | {k1 < k}
| | k1 := k1 + 1;
| | z[k1+l1] := x[k1];
| end else if x[k1+1] <= y[l1+1] then begin
| | k1 := k1 + 1;
| | z[k1+l1] := x[k1];
| end else if x[k1+1] >= y[l1+1] then begin
| | l1 := l1 + 1;
| | z[k1+l1] := y[l1];
| end else begin
| | { такого не бывает }
| end;
end;
{k1 = k, l1 = l, массивы соединены}
Этот процесс можно пояснить так. Пусть у нас есть две стопки
карточек, отсортированных по алфавиту. Мы соединяем их в одну
стопку, выбирая каждый раз ту из верхних карточек обеих стопок,
которая идет раньше в алфавитном порядке.
1.2.20. Даны два массива x[1] <= ... <= x[k] и y[1] <= ...
<= y[l]. Найти их "пересечение", т.е. массив z[1] <= ... <=
z[m], содержащий их общие элементы, причем кратность каждого
элемента в массиве z равняется минимуму из его кратностей в мас-
сивах x и y. Число действий порядка k+l.
1.2.21. Даны два массива x[1]<=...<=x[k] и y[1]<=...<=y[l]
и число q. Найти сумму вида x[i]+y[j], наиболее близкую к числу
q. (Число действий порядка k+l, дополнительная память - фиксиро-
ванное число целых переменных, сами массивы менять не разрешает-
ся.)
Указание. Надо найти минимальное расстояние между элемента-
ми x[1]<=...<=x[k] и q-y[l]<=..<=q-y[1], что нетрудно сделать в
ходе их слияния в один (воображаемый) массив.
1.2.22. (из книги Д.Гриса) Некоторое число содержится в
каждом из трех целочисленных неубывающих массивов x[1] <= ... <=
x[p], y[1] <= ... <= y[q], z[1] <= ... <= z[r]. Найти одно из
таких чисел. Число действий должно быть порядка p + q + r.
Решение.
p1:=1; q1=1; r1:=1;
{инвариант: x[p1]..x[p], y[q1]..y[q], z[r1]..z[r]
содержат общий элемент }
while not ((x[p1]=y[q1]) and (y[q1]=z[r1])) do begin
| if x[p1] первые
элементы оставшихся частей равны}
while not eq do begin
| s := 1; k := 1;
| {a[s][b[s]] - минимальное среди a[1][b[1]]..a[k][b[k]]}
| while k <> n do begin
| | k := k + 1;
| | if a[k][b[k]] < a[s][b[s]] then begin
| | | s := k;
| | end;
| end;
| {a[s][b[s]] - минимальное среди a[1][b[1]]..a[n][b[n]]}
| b [s] := b [s] + 1;
| for k := 2 to n do begin
| | eq := eq and (a[1][b[1]] = a[k][b[k]]);
| end;
end;
writeln (a[1][b[1]]);
1.2.25. Приведенное решение предыдущей задачи требует по-
рядка m*n*n действий. Придумать способ с числом действий порядка
m*n.
Указание. Придется пожертвовать симметрией и выбрать одну
из строк за основную. Двигаясь по основной строке, поддерживаем
такое соотношение: во всех остальных строках отмечен макси-
мальный элемент, не превосходящий текущего элемента основной
строки.
1.2.26. (Двоичный поиск) Дана последовательность x[1] <=
... <= x[n] целых чисел и число a. Выяснить, содержится ли a в
этой последовательности, т. е. существует ли i из 1..n, для ко-
торого x[i]=a. (Количество действий порядка log n.)
Решение. (Предполагаем, что n > 0.)
l := 1; r := n+1;
{если a есть вообще, то есть и среди x[l]..x[r-1], r > l}
while r - l <> 1 do begin
| m := l + (r-l) div 2 ;
| {l < m < r }
| if x[m] <= a then begin
| | l := m;
| end else begin {x[m] > a}
| | r := m;
| end;
end;
(Обратите внимание, что и в случае x[m] = a инвариант не наруша-
ется.)
Каждый раз r-l уменьшается примерно вдвое, откуда и вытека-
ет требуемая оценка числа действий.
Замечание.
l + (r-l) div 2 = (2l + (r-l)) div 2 = (r+l) div 2.
1.2.27. (Из книги Д.Гриса) Дан массив x: array [1..n] of
array [1..m] of integer, упорядоченный по "строкам" и по
"столбцам":
x[i][j] <= x[i+1][j],
x[i][j] <= x[i][j+1]
и число a. Требуется выяснить, встречается ли a среди x[i][j].
Решение. Представляя себе массив a как матрицу (прямо-
угольник, заполненный числами), мы выберем прямоугольник, в ко-
тором только и может содержаться a, и будем его сужать. Прямо-
угольник этот будет содержать x[i][j] при 1<=i<=l и k<=j<=m.
1 k m
-----------------------------------
1| |***********|
| |***********|
| |***********|
l| |***********|
|---------------------------------|
| |
n| |
-----------------------------------
(допускаются пустые прямоугольники при l = 0 и k = m+1).
l:=n; k:=1;
{l>=0, k<=m+1, если a есть, то в описанном прямоугольнике}
while (l > 0) and (k < m+1) and (x[l][k] <> a) do begin
| if x[l][k] < a then begin
| | k := k + 1; {левый столбец не содержит a, удаляем его}
| end else begin {x[l][k] > a}
| | l := l - 1; {нижняя строка не содержит a, удаляем ее}
| end;
end;
{x[l][k] = a или прямоугольник пуст }
answer:= (l > 0) and (k < m+1) ;
Замечание. Здесь та же ошибка: x[l][k] может оказаться не-
определенным. (Её исправление предоставляется читателю.)
1.2.28. (Московская олимпиада по программированию) Дан не-
убывающий массив положительных целых чисел a[1] <= a[2] <=...<=
a[n]. Найти наименьшее целое положительное число, не представи-
мое в виде суммы нескольких элементов этого массива (каждый эле-
мент массива может быть использован не более одного раза). Число
действий порядка n.
Решение. Пусть известно, что числа, представимые в виде
суммы элементов a[1],...,a[k], заполняют отрезок от 1 до некото-
рого N. Если a[k+1] > N+1, то N+1 и будет минимальным числом, не
представимым в виде суммы элементов массива a[1]..a[n]. Если же
a[k+1] <= N+1, то числа, представимые в виде суммы элементов
a[1]..a[k+1], заполняют отрезок от 1 до N+a[k+1].
k := 0; N := 0;
{инвариант: числа, представимые в виде суммы элементов массива
a[1]..a[k], заполняют отрезок 1..N}
while (k <> n) and (a[k+1] <= N+1) do begin
| N := N + a[k+1];
| k := k + 1;
end;
{(k = n) или (a[k+1] > N+1); в обоих случаях ответ N+1}
writeln (N+1);
(Снова тот же дефект: в условии цикла при ложном первом условии
второе не определено.)
1.2.29. (Для знакомых с основами алгебры) В целочисленном
массиве a[1]..a[n] хранится перестановка чисел 1..n (каждое из
чисел встречается по одному разу).
(а) Определить четность перестановки. (И в (а), и в (б) ко-
личество действий порядка n.)
(б) Не используя других массивов, заменить перестановку на
обратную (если до работы программы a[i]=j, то после должно быть
a[j]=i).
Указание. (а) Четность перестановки определяется коли-
чеством циклов. Чтобы отличать уже пройденные циклы, у их эле-
ментов можно, например, менять знак. (б) Обращение производим по
циклам.
1.2.30. Дан массив a[1..n] и число b. Переставить числа в
массиве таким образом, чтобы слева от некоторой границы стояли
числа, меньшие или равные b, а справа от границы - большие или
равные b.
Решение.
l:=0; r:=n;
{инвариант: a[1]..a[l]<=b; a[r+1]..a[n]>=b}
while l <> r do begin
| if a[l+1] <= b then begin
| | l:=l+1;
| end else if a[r] >=b then begin
| | r:=r-1;
| end else begin {a[l+1]>b; a[r]