Главная · Поиск книг · Поступления книг · Top 40 · Форумы · Ссылки · Читатели

Настройка текста
Перенос строк


    Прохождения игр    
Aliens Vs Predator |#6| We walk through the tunnels
Aliens Vs Predator |#5| Unexpected meeting
Aliens Vs Predator |#4| Boss fight with the Queen
Aliens Vs Predator |#3| Escaping from the captivity of the xenomorph

Другие игры...


liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня
Rambler's Top100
Образование - Различные авторы Весь текст 991.22 Kb

Программирование в теоремах и задачах

Предыдущая страница Следующая страница
1  2 3 4 5 6 7 8 9 10 11 12 13 14 ... 85
и впишем в инвариант условия m = p*a + q*b; n = r*a + s*b.

        m:=a; n:=b; p := 1; q := 0; r := 0; s := 1;
        {инвариант: НОД (a,b) = НОД (m,n); m,n >= 0
                    m = p*a + q*b; n = r*a + s*b.}
        while not ((m=0) or (n=0)) do begin
        | if m >= n then begin
        | | m := m - n; p := p - r; q := q - s;
        | end else begin
        | | n := n - m; r := r - p; s := s - q;
        | end;
        end;
        if m = 0 then begin
        | k :=n; x := r; y := s;
        end else begin
        | k := m; x := p; y := q;
        end;

     1.1.16. Решить предыдущую  задачу,  используя  в  алгоритме
Евклида деление с остатком.

     1.1.17. (Э.Дейкстра).  Добавим  в алгоритм Евклида дополни-
тельные переменные u, v, z:

         m := a; n := b; u := b; v := a;
        {инвариант: НОД (a,b) = НОД (m,n); m,n >= 0 }
        while not ((m=0) or (n=0)) do begin
        | if m >= n then begin
        | | m := m - n; v := v + u;
        | end else begin
        | | n := n - m; u := u + v;
        | end;
        end;
        if m = 0 then begin
        | z:= v;
        end else begin {n=0}
        | z:= u;
        end;

Доказать, что после исполнения алгоритма z равно удвоенному  на-
именьшему общему кратному чисел a, b: z = 2 * НОК (a,b).

     Решение. Заметим, что величина m*u + n*v не меняется в ходе
выполнения  алгоритма. Остается воспользоваться тем, что вначале
она равна 2*a*b и что НОД (a, b) * НОК (a, b) = a*b.

     1.1.18.  Написать  вариант  алгоритма Евклида, использующий
соотношения
        НОД(2*a, 2*b) = 2*НОД(a,b)
        НОД(2*a, b)   =   НОД(a,b) при нечетном b,
не включающий деления с остатком, а использующий лишь деление на
2 и проверку четности. (Число действий должно быть порядка log k
для исходных данных, не превосходящих k.)

     Решение.

  m:= a; n:=b; d:=1;
  {НОД(a,b) = d * НОД(m,n)}
  while not ((m=0) or (n=0)) do begin
  | if (m mod 2 = 0) and (n mod 2 = 0) then begin
  | | d:= d*2; m:= m div 2; n:= n div 2;
  | end else if (m mod 2 = 0) and (n mod 2 = 1) then begin
  | | m:= m div 2;
  | end else if (m mod 2 = 1) and (n mod 2 = 0) then begin
  | | n:= n div 2;
  | end else if (m mod 2=1) and (n mod 2=1) and (m>=n)then begin
  | | m:= m-n;
  | end else if (m mod 2=1) and (n mod 2=1) and (m<=n)then begin
  | | n:= n-m;
  | end;
  end;
  {m=0 => ответ=d*n; n=0 => ответ=d*m}

Оценка числа действий: каждое второе действие делит хотя бы одно
из чисел m и n пополам.

     1.1.19. Дополнить алгоритм предыдущей задачи поиском x и y,
для которых ax+by=НОД(a,b).

     Решение. (Идея сообщена Д.Звонкиным) Прежде всего  заметим,
что  одновременое деление a и b пополам не меняет искомых x и y.
Поэтому можно считать, что с самого начала одно из чисел a  и  b
нечетно. (Это свойство будет сохраняться и далее.)
     Теперь  попытаемся,  как  и  раньше,  хранить  такие  числа
p,q,r,s, что
     m = ap + bq
     n = ar + bs
Проблема в том, что при делении, скажем, m на 2 надо разделить p
и  q  на 2, и они перестанут быть целыми (а станут двоично-раци-
ональными). Двоично-рациональное число естественно хранить в ви-
де пары (числитель, показатель степени двойки в знаменателе).  В
итоге  мы  получаем  d  в  виде комбинации a и b с двоично-раци-
ональными коэффициентами. Иными словами, мы имеем
        (2 в степени i)* d = ax + by
для  некоторых  целых x,y и натурального i. Что делать, если i >
1? Если x и y чётны, то на 2 можно сократить. Если это  не  так,
положение можно исправить преобразованием
        x := x + b
        y := y - a
(оно  не меняет ax+by). Убедимся в этом. Напомним, что мы счита-
ем, что одно из чисел a и b нечётно. Пусть это будет a. Если при
этом y чётно, то и x должно быть чётным (иначе ax+by  будет  не-
чётным). А при нечётном y вычитание из него нёчетного a делает y
чётным.

     1.1.20. Составить программу, печатающую квадраты всех нату-
ральных чисел от 0 до заданного натурального n.

     Решение.

        k:=0;
        writeln (k*k);
        {инвариант: k<=n, напечатаны все
          квадраты до k включительно}
        while not (k=n) do begin
        | k:=k+1;
        | writeln (k*k);
        end;

     1.1.21.  Та же задача, но разрешается использовать из ариф-
метических операций лишь сложение и вычитание, причем общее чис-
ло действий должно быть порядка n.

     Решение.  Введем  переменную k_square (square - квадрат),
связанную с k соотношением k_square = k*k:

        k := 0; k_square := 0;
        writeln (k_square);
        while not (k = n) do begin
        | k := k + 1;
        | {k_square = (k-1) * (k-1) = k*k - 2*k + 1}
        | k_square := k_square + k + k - 1;
        | writeln (k_square);
        end;

     1.1.22. Составить программу, печатающую разложение на прос-
тые множители заданного натурального числа n > 0 (другими слова-
ми, требуется печатать только простые числа и произведение напе-
чатанных  чисел должно быть равно n; если n = 1, печатать ничего
не надо).

     Решение (1 вариант).

        k := n;
        {инвариант:  произведение напечатанных чисел и k равно
         n, напечатаны только простые числа}
        while not (k = 1) do begin
        | l := 2;
        | {инвариант: k не имеет делителей в интервале (1,l)}
        | while k mod l <> 0 do begin
        | | l := l + 1;
        | end;
        | {l - наименьший делитель k, больший 1, следовательно,
        |  простой}
        | writeln (l);
        | k:=k div l;
        end;

     (2 вариант).

         k := n; l := 2;
         {произведение  k и напечатанных чисел равно n; напеча-
          танные числа просты; k не имеет делителей, меньших l}
         while not (k = 1) do begin
         | if k mod l = 0  then begin
         | | {k делится на l и не имеет делителей,
         | |   меньших l, значит, l просто}
         | | k := k div l;
         | | writeln (l);
         | end else begin
         | | { k не делится на l }
         | | l := l + 1;
         | end;
         end;

     1.1.23. Составить программу решения предыдущей задачи, ис-
пользующую  тот  факт,  что  составное число имеет делитель, не
превосходящий квадратного корня из этого числа.

     Решение. Во втором варианте решения вместо l:=l+1 можно на-
писать

                if l*l > k then begin
                | l:=k;
                end else begin
                | l:=l+1;
                end;

     1.1.24. Проверить, является ли заданное натуральное  число
n > 1 простым.

     1.1.25. (Для знакомых с основами алгебры). Дано целое  га-
уссово  число n + mi (принадлежащее Z[i]). (a) Проверить, явля-
ется ли оно простым (в Z[i]); (б) напечатать его разложение  на
простые (в Z[i]) множители.

     1.1.26. Разрешим использовать команды write (i) лишь при i
=  0,1,2,...,9.  Составить программу, печатающую десятичную за-
пись заданного натурального числа n > 0. (Случай n =  0  явился
бы некоторым исключением, так как обычно нули в начале числа не
печатаются, а для n = 0 - печатаются.)

     Решение.

        base:=1;
        {base - степень 10, не превосходящая n}
        while 10 * base <= n do begin
        | base:= base * 10;
        end;
        {base - максимальная степень 10, не превосходящая n}
        k:=n;
        {инвариант: осталось напечатать k с тем же числом
         знаков, что в base; base = 100..00}
        while base <> 1 do begin
        | write(k div base);
        | k:= k mod base;
        | base:= base div 10;
        end;
        {base=1; осталось напечатать однозначное число k}
        write(k);

(Типичная ошибка при решении этой задачи: неправильно  обрабаты-
ваются числа с нулями посередине. Приведенный инвариант допуска-
ет  случай, когда k < base; в этом случае печатание k начинается
со старших нулей.)

     1.1.27. То же самое, но надо напечатать десятичную запись в
обратном порядке. (Для n = 173 надо напечатать 371.)

     Решение.

        k:= n;
        {инвариант: осталось напечатать k в обратном порядке}
        while k <> 0 do begin
        | write (k mod 10);
        | k:= k div 10;
        end;

     1.1.28. Дано натуральное n. Подсчитать  количество  решений
неравенства  x*x + y*y < n в натуральных (неотрицательных целых)
числах, не используя действий с вещественными числами.

     Решение.

        k := 0; s := 0;
        {инвариант: s = количество решений неравенства
          x*x + y*y < n c x < k}
        while k*k < n do begin
        | ...
        | {t = число решений неравенства k*k + y*y < n
        |  (при данном k) }
        | k := k + 1;
        | s := s + t;
        end;
        {k*k >= n, поэтому s = количество всех решений
          неравенства}

     Здесь ... - пока еще не написанный кусок программы, который
будет таким:

        l := 0; t := 0;
        {инвариант: t = число решений
          неравенства k*k + y*y < n c y < l }
        while k*k + l*l < n do begin
        | l := l + 1;
        | t := t + 1;
        end;
        {k*k + l*l >= n,  поэтому  t = число
          всех решений неравенства k*k + y*y < n}

     1.1.29. Та же задача, но количество  операций  должно  быть
порядка (n в степени 1/2). (В предыдущем решении, как можно
подсчитать, порядка n операций.)

     Решение. Нас интересуют точки решетки (с целыми координата-
  *              ми) в первом квадранте, попадающие внутрь круга
  * * *          радиуса  (n  в  степени  1/2). Интересующее нас
  * * * *        множество (назовем его X) состоит из  объедине-
  * * * *        ния  вертикальных  столбцов  убывающей  высоты.
  * * * * *      Идея решения состоит в  том,  чтобы  "двигаться
вдоль  его  границы",  спускаясь  по  верхнему  его краю, как по
лестнице. Координаты движущейся точки  обозначим  .  Введем
еще одну переменную s и будем поддерживать истинность такого ус-
ловия:
      находится сразу над k-ым столбцом;
     s - число точек в предыдущих столбцах.

     Формально:
l  - минимальное среди тех l >= 0, для которых  не принад-
    лежит X;
s - число пар натуральных x, y, для которых x < k и   при-
    надлежит X.
Обозначим эти условия через (И).

  k := 0; l := 0;
  while "<0,l> принадлежит X" do begin
  | l := l + 1;
  end;
  {k = 0, l - минимальное среди тех l >= 0,
   для которых  не принадлежит X }
  s := 0;
  {инвариант: И}
  while not (l = 0) do begin
  | s := s + l;
  | {s - число точек в столбцах до k-го включительно}
  | k := k + 1;
  | {точка  лежит вне X, но,  возможно,  ее  надо сдвинуть
  |    вниз, чтобы восстановить И }
  | while (l <> 0) and (" не принадлежит X") do begin
  | | l := l - 1;
  | end;
  end;
  {И, l = 0, поэтому k-ый столбец и все следующие пусты, а
    s равно искомому числу}

Оценка числа действий очевидна: сначала мы движемся вверх не бо-
лее  чем  на  (n в степени 1/2) шагов, а затем вниз и вправо - в
каждую сторону не более чем на (n в степени 1/2) шагов.

     1.1.30. Даны натуральные числа n и k, n > 1.  Напечатать  k
десятичных знаков числа 1/n. (При наличии двух десятичных разло-
жений  выбирается то из них, которое не содержит девятки в пери-
оде.) Программа должна использовать только целые переменные.

     Решение. Сдвинув в десятичной записи числа 1/n запятую на k
мест вправо, получим число (10 в степени k)/n. Нам надо  напеча-
тать  его целую часть, т. е. разделить (10 в степени k) на n на-
цело. Стандартный способ требует использования больших по  вели-
чине  чисел, которые могут выйти за границы диапазона представи-
мых чисел. Поэтому мы сделаем иначе (следуя обычному методу "де-
ления уголком") и будем хранить "остаток" r:

  l := 0; r := 1;
  {инв.: напечатано l разрядов 1/n, осталось напечатать
    k - l разрядов дроби r/n}
   while l <> k do begin
   | write ( (10 * r) div n);
   |   r := (10 * r) mod n;
   |   l := l + 1;
Предыдущая страница Следующая страница
1  2 3 4 5 6 7 8 9 10 11 12 13 14 ... 85
Ваша оценка:
Комментарий:
  Подпись:
(Чтобы комментарии всегда подписывались Вашим именем, можете зарегистрироваться в Клубе читателей)
  Сайт:
 
Комментарии (1)

Реклама