2 (ab) кроме a 0
3 (aba) b 4 (abab)
3 (aba) a 1 (a)
3 (aba) кроме a,b 0
4 (abab) c 5 (ababc)
4 (abab) a 3 (aba)
4 (abab) кроме a,c 0
Для проверки посмотрим, к примеру, на вторую снизу строку. Если
прочитанная часть кончалась на "abab", а затем появилась буква
"a", то теперь прочитанная часть кончается на "ababa". На-
ибольшее начало образца ("ababc"), которое есть ее конец - это
"aba".
Философский вопрос: мы говорили, что трудность состоит в
том, что есть несколько возможных положений образца, каждое из
которых может оказаться истинным. Им соответствуют несколько на-
чал образца, являющихся концами входного слова. Но конечный ав-
томат помнит лишь самое длинное из них. Как же остальные?
Философский ответ. Дело в том, что самое длинное из них оп-
ределяет все остальные - это его концы, одновременно являющиеся
его началами.
Не составляет труда для любого конкретного образца написать
программу, осуществляющую поиск этого образца описанным спосо-
бом. Однако хотелось бы написать программу, которая ищет произ-
вольный образец в произвольном слове. Это можно делать в два
этапа: сначала по образцу строится таблица переходов конечного
автомата, а затем читается входное слово и состояние преобразу-
ется в соответствии с этой таблицей. Подобный метод часто ис-
пользуется для более сложных задач поиска (см. далее), но для
поиска подслова существует более простой и эффективный алгоритм,
называемый алгоритмом Кнута - Морриса - Пратта. Но прежде нам
понадобятся некоторые вспомогательные утверждения.
10.3. Вспомогательные утверждения
Для произвольного слова X рассмотрим все его начала, однов-
ременно являющиеся его концами, и выберем из них самое длинное.
(Не считая, конечно, самого слова X.) Будем обозначать его n(X).
Примеры: n(aba)=a, n(abab)=ab, n(ababa)=aba, n(abc) = пус-
тое слово.
10.3.1. Доказать, что все слова n(X), n(n(X)), n(n(n(X)))
и т.д. являются началами слова X.
Решение. Каждое из них (согласно определению) является на-
чалом предыдущего.
По той же причине все они являются концами слова X.
10.3.2. Доказать, что последовательность предыдущей задачи
обрывается (на пустом слове).
Решение. Каждое слово короче предыдущего.
Задача. Доказать, что любое слово, одновременно являющееся
началом и концом слова X (кроме самого X) входит в последова-
тельность n(X), n(n(X)),...
Решение. Пусть слово Y есть одновременно начало и конец X.
Слово n(X) - самое длинное из таких слов, так что Y не длиннее
n(X). Оба эти слова являются началами X, поэтому более короткое
из них является началом более длинного: Y есть начало n(X). Ана-
логично, Y есть конец n(X). Рассуждая по индукции, можно предпо-
лагать, что утверждение задачи верно для всех слов короче X, в
частности, для слова n(X). Так что слово Y, являющееся концом и
началом n(X), либо равно n(X), либо входит в последовательность
n(n(X)), n(n(n(X))), ..., что и требовалось доказать.
10.4. Алгоритм Кнута - Морриса - Пратта
Алгоритм Кнута - Морриса - Пратта (КМП) получает на вход
слово
X = x[1]x[2]...x[n]
и просматривает его слева направо буква за буквой, заполняя при
этом массив натуральных чисел l[1]..l[n], так что
l[i] = длина слова n(x[1]...x[i])
(функция n определена в предыдущем пункте). Словами: l[i] есть
длина наибольшего начала слова x[1]..x[i], одновременно являюще-
гося его концом.
10.4.1. Какое отношение все это имеет к поиску подслова?
Другими словами, как использовать алгоритм КМП для определения
того, является ли слово A подсловом слова B?
Решение. Применим алгоритм КМП к слову A#B, где # - специ-
альная буква, не встречающаяся ни в A, ни в B. Слово A является
подсловом слова B тогда и только тогда, когда среди чисел в мас-
сиве l будет число, равное длине слова A.
10.4.2. Описать алгоритм заполнения таблицы l[1]..l[n].
Решение. Предположим, что первые i значений l[1]..l[i] уже
найдены. Мы читаем очередную букву слова (т.е. x[i+1]) и должны
вычислить l[i+1].
1 i i+1
--------------------------------------------------------
| уже прочитанная часть X | |
--------------------------------------------------------
\-----------Z-----------/ \------------Z------------/
Другими словами, нас интересуют начала Z слова x[1]..x[i+1], од-
новременно являющиеся его концами - из них нам надо выбрать са-
мое длинное. Откуда берутся эти начала? Каждое из них получается
из некоторого слова Z' приписыванием буквы x[i+1]. Слово Z' яв-
ляется началом и концом слова x[1]..x[i]. Однако не любое слово,
являющееся началом и концом слова x[1]..x[i], годится - надо,
чтобы за ним следовала буква x[i+1].
Получаем такой рецепт отыскания слова Z. Рассмотрим все на-
чала слова x[1]..x[i], являющиеся одновременно его концами. Из
них выберем подходящие - те, за которыми идет буква x[i+1]. Из
подходящих выберем самое длинное. Приписав в его конец x[i+1],
получим искомое слово Z.
Теперь пора воспользоваться сделанными нами приготовлениями
и вспомнить, что все слова, являющиеся одновременно началами и
концами данного слова, можно получить повторными применениями к
нему функции n из предыдущего раздела. Вот что получается:
i:=1; l[1]:= 0;
{таблица l[1]..l[i] заполнена правильно}
while i <> n do begin
| len := l[i]
| {len - длина начала слова x[1]..x[i], которое является
| его концом; все более длинные начала оказались
| неподходящими}
| while (x[len+1] <> x[i+1]) and (len > 0) do begin
| | {начало оказалось неподходящим, применяем к нему n}
| | len := l[len];
| end;
| {нашли подходящее или убедились в отсутствии}
| if x[len+1] = x[i+1] do begin
| | {x[1]..x[len] - самое длинное подходящее начало}
| | l[i+1] := len+1;
| end else begin
| | {подходящих нет}
| | l[i+1] := 0;
| end;
| i := i+1;
end;
10.4.3. Доказать, что число действий в приведенном только
что алгоритме не превосходит Cn для некоторой константы C.
Решение. Это не вполне очевидно: обработка каждой очередной
буквы может потребовать многих итераций во внутреннем цикле. Од-
нако каждая такая итерация уменьшает len по крайней мере на 1, и
в этом случае l[i+1] окажется заметно меньше l[i]. С другой сто-
роны, при увеличении i на единицу величина l[i] может возрасти
не более чем на 1, так что часто и сильно убывать она не может -
иначе убывание не будет скомпенсировано возрастанием.
Более точно, можно записать неравенство
l[i+1] <= l[i] - (число итераций на i-м шаге) + 1
или
(число итераций на i-м шаге) <= l[i] - l[i+1] + 1
и остается сложить эти неравества по всем i и получить оценку
сверху для общего числа итераций.
10.4.4. Будем использовать этот алгоритм, чтобы выяснить,
является ли слово X длины n подсловом слова Y длины m. (Как это
делать с помощью специального разделителя #, описано выше.) При
этом число действий будет не более C*(n+m), и используемая па-
мять тоже. Придумать, как обойтись памятью не более Cn (что мо-
жет быть существенно меньше, если искомый образец короткий, а
слово, в котором его ищут - длинное).
Решение. Применяем алгоритм КМП к слову A#B. При этом вы-
числение значений l[1],...,l[n] проводим для слова X длины m и
запоминаем эти значения. Дальше мы помним только значение l[i]
для текущего i - кроме него и кроме таблицы l[1]..l[n], нам для
вычислений ничего не нужно.
На практике слова X и Y могут не находиться подряд, поэтому
просмотр слова X и затем слова Y удобно оформить в виде разных
циклов. Это избавляет также от хлопот с разделителем.
10.4.5. Написать соответствующий алгоритм (проверяющий, яв-
ляется ли слово X=x[1]..x[n] подсловом слова Y=y[1]..y[m]).
Решение. Сначала вычисляем таблицу l[1]..l[n] как раньше.
Затем пишем такую программу:
j:=0; len:=0
{len - длина максимального начала слова X, одновременно
являющегося концом слова y[1]..j[j]}
while (len <> n) and (j <> m) do begin
| while (x[len+1] <> y[j+1]) and (len > 0) do begin
| | {начало оказалось неподходящим, применяем к нему n}
| | len := l[len];
| end;
| {нашли подходящее или убедились в отсутствии}
| if x[len+1] = y[j+1] do begin
| | {x[1]..x[len] - самое длинное подходящее начало}
| | len := len+1;
| end else begin
| | {подходящих нет}
| | len := 0;
| end;
| i := i+1;
end;
{если len=n, слово X встретилось; иначе мы дошли до конца
слова Y, так и не встретив X}
10.5. Алгоритм Бойера - Мура
Этот алгоритм делает то, что на первый взгляд кажется не-
возможным: в типичной ситуации он читает лишь небольшую часть
всех букв слова, в котором ищется заданный образец. Как так мо-
жет быть? Идея проста. Пусть, например, мы ищем образец "abcd".
Посмотрим на четвертую букву слова: если, к примеру, это буква
"e", то нет никакой необходимости читать первые три буквы. (В
самом деле, в образце буквы "e" нет, поэтому он может начаться
не раньше пятой буквы.)
Мы приведем самую простой вариант этого алгоритма, который
не гарантирует быстрой работы во всех случаях. Пусть x[1]..x[n]
- образец, который надо искать. Для каждого символа s найдем са-
мое правое его вхождение в слово X, то есть наибольшее k, при
котором x[k]=s. Эти сведения будем хранить в массиве pos[s]; ес-
ли символ s вовсе не встречается, то нам будет удобно положить
pos[s] = 0 (мы увидим дальше, почему).
10.5.1. Как заполнить массив pos?
Решение.
положить все pos[s] равными 0
for i:=1 to n do begin
pos[x[i]]:=i;
end;
В процессе поиска мы будем хранить в переменной last номер буквы
в слове, против которой последняя буква образца. Вначале last = m
(длине образца), затем постепенно увеличивается.
last:=m;
{все предыдущие положения образца уже проверены}
while last <= m do begin {слово не кончилось}
| if x[m] <> y[last] then begin {последние буквы разные}
| | last := last + (m - pos[y[last]]);
| | {m - pos[y[last]] - это минимальный сдвиг образца,
| | при котором напротив y[last] встанет такая же
| | буква в образце. Если такой буквы нет вообще,
| | то сдвигаем на всю длину образца}
| end else begin
| | если нынешнее положение подходит, т.е. если
| | x[1]..x[m] = y[last-m+1]..y[last],
| | то сообщить о совпадении;
| | last := last+1;
| end;
end;
Знатоки рекомендуют проверку совпадения проводить справа налево,
т.е. начиная с последней буквы образца (в которой совпадение за-
ведомо есть). Можно также немного сэкономить, произведы вычита-
ние заранее и храня не pos[s], а m-pos[s], т.е. число букв в об-
разце справа от последнего вхождения буквы s.
Возможны разные модификации этого алгоритма. Например, мож-
но строку last:=last+1 заменить на last:=last+(m-u), где u - ко-
ордината второго справа вхождения буквы x[m] в образец.
10.5.2. Как проще всего учесть это в программе?
Решение. При построении таблицы pos написать
for i:=1 to n-1 do...
в основной программе вместо last:=last+1 написать
last:= last+m-pos[y[last]];
Приведенная нами упрощенный вариант алгоритма Бойера - Мура
в некоторых случаях требует существенно больше n действий (число
действий порядка mn), проигрывая алгоритму Кнута - Морриса -