неполяризованной волне колебания (векторов смешения и скорости
частиц среды в случае упругих волн или векторов напряженностей
электрического и магнитного полей в случае электромагнитных
волн) в каждой точке пространства по всевозможным направлениям
в плоскости, перпендикулярной направлению распрстранения вол-
ны, быстро и беспорядочно сменяют друг друга так, что ни одно
из этих направлений колебаний не является преимущественным.
Поперечную волну называют поляризованной, если в каждой точке
пространства направление колебаний сохраняется неизменным (ли-
нейнополяризованным) или изменяется с течением времени по оп-
ределенному закону - (циркулярно или элептическиполяризован-
ной).
Поляризация может возникнуть вследствие отсутствия осевой
симметрии в возбуждающем волну излучателе (например, в лазе-
рах), при отражении и приломлении волн на границе двух сред
(наибольше степень поляризации имеет место при отражении под
углом Брюстера тангенс угла равен коэффициенту преломления от-
ражающей среды) при рапространении волны в анизотропной среде.
А.с. 269 588: Способ определения стойкости стекла в спаях
с металлом к электролизу, состоящий в том, что через термоста-
тированный образец пропускается электрический ток, причем нап-
ряжение питающего источника остается постоянным, и измеряют
величину тока, проходящего через образец, отличающийся тем,
что с целью повышения точности наблюдений, о ходе процесса
электролиза судят по измерению картины механических напряжений
в местах спая с металлом, наблюдаемой в лучах поляризованного
света.
А.с. 452 786: Способ магнитного контроля ферромагнитных
материалов, заключающийся в том, что на поверхность предвари-
тельно намагниченного материала наносят индикатор и по рисун-
ку, образованному под воздействием полей рассеяния, судят о
качестве изделия, отличающийся тем, что с целью повышения его
чувствительности, в качестве индикатора используют монокрис-
таллическую пленку магний-марганцевого феррита с полосовой до-
менной структурой, а изменение состояния индикатора наблюдают
в поляризованном свете.
А.с. 221 345: Способ контроля кристаллизации кондитерских
масс, например, ирисной, в процессе производства путем микрос-
копирования исследуемого образца, отличающийся тем, с целью
повышения точности контроля, микроскопирование осуществляют в
проходящем поляризованном световом луче с измерением при этом
интенсивности светового потока с последующим определением со-
держания кристаллов.
А.с. 249 025: Способ оценки распределния контактных нап-
ряжений по величине деформации пластичной прокладки, распола-
гаемой в зоне контакта между соприкосающимися поверхностями,
отличающийся тем, что с целью повышения точности, в качестве
пластичной прокладки используют пленку из оптически чувстви-
тельного материала, которую затем просвечивают поляризованным
светом в направлении действия контактных сил, и по картине по-
лос судят о распределении контактных напряжений.
5.4.4. Вобщем случае д и ф р а к ц и я - это отлонения
волновых движений от законов геометрической /прямолучевой/ оп-
тики. Если на пути распространения волны имеется препятствие,
то на краях препятствия наблюдается огибание волной края. Если
размеры препятствия велики по сравнению с длиной волны, то
распрстранение волны почти не отклоняется от прямолинейного,
т.е. дифракционные явления не значительны. Если же размеры
препятствия сравнимы с длиной волны, то наблюдается сильное
отклонение от прямолинейного распространения волнового фронта.
При совсем малых размерах препятствия волна полностью его оги-
бает - она "не замечает" препятствия. Очевидно, величина отк-
лонения /количественная характеристика дифракции/ при заданном
препятствии будет зависеть от длины волны; волны с большей
длиной будут сильнее огибать препятствие.
Такое разделение волны используется в дифракционных
спектроскопах, где белый свет /совокупность волн различной
длины/ располагается в спектр с помощью дифракционной решетки-
системы частых полос.
В авторском свидетельстве N'249 468 изменение дифракцион-
ной картины при изменении размеров препятствий использовано
для градировки магнитного поля, под действием которого изменя-
ются параметры ферромагнитной пленки с полосовой доменной
структурой: Способ градировки магнитного поля спомощью этало-
на, отличающийся тем, что с целью повышения точности и упроще-
ния процесса градуровки эталон, в качетве которого использова-
на тонкая ферромагнитная пленка с полосовой доменной
структурой, на которую нанесен магнитный коллоид, намагничива-
ют под определенным углом к направлению силовых линий градуи-
руемого поля, освещают его светом и наблюдают диффрагировавший
на эталоне луч света, затем увеличивают градуируемое поле по
величине, при которой исчезает наблюдаемый луч, сопоставляют
эту величину с известным значением поля переключения эталона.
А.с. 252 625: Способ определения статистических характе-
ристик прозрачных диэлектрических пленок, заключающийся в том,
что через исследуемую пленку пропускают луч света, отличающий-
ся тем, что с целью упрощения процесса и сокращения времени
определения, на пути луча когенентного света за исследуемой
пленкой устанавливают экран с отверстием, вращают исследуемую
пленку в плоскости, перпендикулярной оси луча, получают усред-
ненную дифракционную картину от отверстия и затем из сравнения
полученной усредненной дифракционной картины с расчетной кар-
тиной определяют статические характеристики пленки.
5.4.5. Интенференция волны.
Явление, возникающее при наложении двух или нескольких
волн и состоящее в устойчивом во времени их взаимном усилении
в одних точках пространства и ослаблении в других в зависимос-
ти от соотношения между фазами этих волн. Интерференционная
картина может наблюдаться только в случае когерентных волн, т.
е. волн, разность фаз которых не зависит от времени. При ин-
терференции поперечных волн помимо когерентности волн необхо-
димо, чтобы им соответствовали колебания, совершающиеся вдоль
одного и того же или близких напрвлений: поэтому две когерент-
ные волны, поляризованные во взаимно перпендикулярных направ-
лениях интерферировать не будут. Существует много различных
методов получения когерентных волн: наиболее широко распрост-
раненными Являются способы, основанные на использовании прямой
и отраженной волны; если отраженная волна направлена точно на-
зад т.е. на 180 градусов, то могут возникнуть стоячие волны.
А.с. 154 676: Способ определения абсолютного значения ус-
корения силы тяжести, отличающийся тем, что с целью повышения
точности измерения абсолютного значения ускорения силы тяжес-
ти, время падения измеряют путем подсчета количества временных
периодических интервалов, задаваемых эталоном частоты, в пери-
од между моментами совпадения отрезков пути свободного падения
с длиной трубчатого концевого эталона, сличаемых интерференци-
онным методом в процессе свободного падения тела.
Патент США 3 796 493: Аппарат для измерения шага резьбы
прецизионного ходового винта посредством оптической интерфе-
ренции. Два чувствительных элемента приводят в контакт с одной
и той же стороной резьбы винта в двух точках, фазы которых от-
личаются на 180 градусов. Щупы смонтированы на направляющей,
которая может перемещаться в любом направлении на каретке, в
плоскости, параллельной плоскости движения каретки вдольоси
винта, регулируют таким образом, чтобы она приблизительно рав-
нялась шагу винта. Средняя точка между сферическими концами
двух щупов располагается в вершине кубического уголкового от-
ражателя, смонтированного на направляющей. Световой луч от
уголкового кубического отражателя отражается рефлектором. Шаг
резьбы измеряют используя интерференцию между световыми луча-
ми, разделенными полупрозрачным зеркалом. Один из лучей испы-
тывает отражения от уголкового отражателя и рефлектора. Изме-
ренную величину сравнивают с эталонным шагом.
5.4.6. Голография.
Явления интерференции и дифракции волн лежат в основе
принципиально нового метода получения обьемных изображений
предметов - голографии.
Теоретические предпосылки голографии существовали давно /
Д.Габор, 1948г./, однако практическое ее осуществление связано
с появлением лазеров - источников света высокой интенсивности,
когерентности и монохроматичности.
Суть голографии состоит в следующем. Обьект освещают ко-
герентным светом и фотографируют интерференционную картину
взаимодействия света, рассеянного обьектом, с когерентным из-
лучением источника, освещающего обьект. Эта интерференционная
картина - чередование темных и светлых областей сложной конфи-
гурации, зарегистрированная фотопластинкой и есть голограмма.
Она не имеет никакого сходства с обьектом, однако несет в себе
полную визуальную информацию о нем, так как фиксирует распре-
деление амплитуд и фаз волнового поля - результата наложения
опорной когерентной волны и волн, дифрагированных на обьекте.
Для восстановления изображения голограмму освещают опорным
пучком света, который дифрагируя на неоднородностях почернения
фотоэмульсии, дает обьемное изображение, обладающей полной ил-
люзией реального обьекта.
Голограммы обладают рядом интересных особенностей. Напри-
мер, если голограмму расколоть на несколько кусков, то каждый
из них при просвечивании дает полное изображение предмета, как
и целая голограмма. Изменяются лишь четкость изображения и
степень обьемности. Если же с голограммой контактным способом
снять обращенную копию /негатив/, то изображение полученное от
этой копии все равно останется позитивным.
Одно из фундаментальных открытий в области голографии
принадлежит Ю.Н.Денисюку, осуществившему голографию в стоячих
волнах. Открытие зарегистрировано под N'88 со следующей форму-
лой:
"Установлено ранее неизвестное явление возникновения
пространственного неискаженного цветного изображения обьекта
при отражении излучения от трехмерного элемента прозрачной ма-
териальной среды, в которой распределение плотности вещества
соответствует распределению интенсивности поля стоячих волн,
образующихся вокруг обьекта при рассеянии на нем излучения".
Такие трехмерные галограммы на стадии восстановления нео-
бязательно освещать когерентным излучением,- можно пользовать-
ся обычным источником света.
Возможности использования голографических методов неис-
черпаемы. Например, если процессы регистрации и восстановления
производить при разных длинах волн, то изображение обьекта во
столько раз, во сколько длина волны восстановления больше дли-
ны волны регистрации /голографический микроскоп/. С помощью
голографии можно получать интерференционные картины от обьек-
тов, диффузно рассеивающих свет. Совмещая голографическое
изображение с самим обьектом и изучая интерференционную карти-
ну, можно зафиксировать самые незначительные деформации обьек-
та.
А.с. 250 465: Способ определения чистоты обработки по-
верхности изделия...., отличающийся тем, что с целью повышения
чувствительности способа, сначала получают голограмму контро-
лируемого изделия, производят освещение поверхности изделия,
накладываемое на него восстановленное с голограммы его дейс-
твительное изображение, и регистрируют при этом интенсивность
зеркально и диффузно отраженного от поверхности изделия излу-
чения, затем изменяют взаимное расположение изделия и его
действительного изображения на величину большую, чем средняя
высота микронеровностей поверхности, регистрируют интенсив-
ность зеркально отраженного от поверхности изделия и по соот-