происходит за счет того, что в жидкости могут находиться или
возникать под действием поля свободные ионы. Они становятся
центрами ориентации полярных молекул, т.е. источниками заря-
женных групп, для которых в электрическом поле возможно движе-
ние типа электрофореза. Количество движения таким образом, пе-
реносится от слоя к слою поперек потока.
Другая возможность образования групп-ориентация полярных
молекул, имеющих постоянный дипольный момент. Молекулы следят
за электрическим полем, ориентируясь поперек потока : для пре-
одоления доплнительного сопротивления нужны затраты энергии.
4.3 ЯВЛЕНИЕ СВЕРХТЕКУЧЕСТИ.
Особыми вязкостными свойствами обладает жидкий гелий, ко-
торый при понижении температуры испытывает фазовый переход
второго рода, превращаясь в сверхтекучую модификацию гелия ---
Не II. Причем в Не II превращается не весь гелий, а только
часть, т.е. при температуре ниже - - перехода (Т=2.17 К) гелий
можно представить себе состоящим из двух компонент - нормаль-
ный, свойства которого аналогичны свойствам гелия до перехода
(Не I) и сверхтекучей , вязкость которой чрезвычайно мала (
меньше 1.0е-1 ).
Компоненты могут двигаться независимо друг от друга, при-
чем движение сверхтекучей компоненты не связано с переносом
тепла ( ее энтропия равна нулю).
Низкая вязкость гелия позволяет использовать его в ка-
честве смазки, например в подшипниках.
Свойство сверхтекучей компоненты легко проникать в малей-
шую щель делает Не II удобным для поиска течей: погружение в
Не II - самая строгая проверка герметичности.
Малая ширина перехода ( 1.0е- К ) позволяет использовать
его как опорную точку при измерении температуры.
4.3.1 СВЕРХПРОВОДИМОСТЬ.
Благодаря встречному конвективному движению двух компо-
нент тепло-передача в Не II происходит без переноса массы, в
результате чего теплопроводность Не II чрезвычайно высока.
Проявляется это, например, в прекращении кипения после II- пе-
рехода - теплопроводность настолько высока, что пузырьки газа
образоваться не могут и испарение происходит с поверхности.
Благодаря сверхвысокой теплопроводности Не II может слу-
жить хорошим хладоагентом для охлаждения.
Для различных целей физики низких температур часто требу-
ются тепловые ключи - устройства, теплопроводность которых
можно менять по своему усмотрению. Одной из возможных реализа-
ций теплового ключа является трубка, наполненная гелием, кото-
рый мы, меняя давление можем переводить изсвехтекучего состоя-
ния в нормальное и обратно.
4.3.2 ТЕРМОМЕХАНИЧЕСКИЙ ЭФФЕКТ.
Если нагреть Не II в одном из сосудов ,сообщающихся между
собой через тонкий капилляр или пористую перегородку, то в нем
за счет перехода в обычную понизится концентрация сверхтекучей
компоненты. Т.к. сверхтекучая компонента, стремясь к установ-
лению равновесия, будет по капилляру поступать из ненагретого
сосуда, а нормальная компонента из нагретого выходить не бу-
дет, уровень гелия в нагреваемом сосуде увеличится .
Этот эффект может быть использован для создания своеоб-
разных насосов Не II .
4.3.3 МЕХАНО-КАЛОРИЧЕСКИЙ ЭФФЕКТ.
Если повысить давление в одном из сосудов , рассматривае-
мых в предыдущем пункте, заполненных Не , находящемся в
сверхтекучем состоянии, то сквозь капилляр будет протекать
только сверхтекучая компонента.
Сверхтекучая компонента теплоту из сосуда , из которого
она вытекает , не уносит, вследствие чего температура внутри
этого сосуда будет повышаться. Температура же сосуда , в кото-
рый притекает сверхтекучая компонента будет уменьшаться.
На основе этого эффекта П.Л.Капицей был построен охлади-
тель. Одна ступень охладителя давала перепад температур 0.4 К.
Достоинствами метода является то, что его холодопроизво-
дительность не уменьшается с понижением температуры.
Используя Не II ка холодильный агент возможно в принципе
приблизиться сколь угодно близко к температуре абсолютного ну-
ля.
4.3.4 ПЕРЕНОС ПО ПЛЕНКЕ.
Поверхность тела, соприкасающегося с Не II покрывается
пленкой сверхтекучего гелия, по которой может происходить пе-
ренос жидкости из оного сосуда в другой.
Так, например , пустой сткан, погруженный не до краев в
Не II через некоторое время заполнится гелием. Скорость пере-
носа от разности уровней жидкости не зависит , и определяется
только периметром стенок в самом узком месте соединения.
Поскольку тонкую пленку можно рассматривать как капилляр,
то при переносе гелия на пленке имеет место термохимический
эффект. Можно усилить эффект , увеличив периметр тела, соеди-
няющего два сосуда, например, вставив пучок проволок.
Эффект нашел применение для разделения изотопов гелия Не-
3 и Не-4. Не-3 не свехтекучий, и по пленке сосуда, содержащего
смесь изотопов удаляется сам собой только изотоп Не-4.
Движение пленки можно остановить , если поместить пленку
между обкладками конденсатора, на который подано напряжение с
частотой 40-50 Герц.
4.4.1 ЭФФЕКТ ТОМСА.
Сопротивление , оказываемое трубопроводом потоку жидкости
при ламинарном режиме течения меньше , чем при турбулентном.
В 1948 г. Б.Томс ( Англия ) установил, что при добавлении
в воду полимерной добавки трение между турбулентным потоком и
трубопроводом значительно снижается .
Сам Томс работал с полиметилметакрилатом, растворенным в
монохлорбензоле; в последующие годы ученые и изобретатели в
различных странах нашли много других присадок, работающих еще
более эффективно.
Практическое применение эффекта Томса весьма разнообразно
: по традиции "смазывают" различными присадками трубопроводы,
"смазывают" полимерами морские и речные суда, напорные колонны
глубоких скважин и т.д.
Эффект Томса обуславливается образованием на границе
твердое тело-жидкость молекулярных растворов, которые ограни-
чивают турбулентность потока. Установлено , что добавка поли-
меров более эффективно действует при высоких скоростях потока
, где развивающаяся турбулентность потока больше.
Патент США N 3435796 : В устройстве, уменьшающем сопро-
тивление подводного аппарата, используется слабый раствор по-
лимера, образующий в пограничном слое забортной воды при сме-
щении подогретой жидкой смеси либо гранулированного или
порошкообразного полимера с морской водой. Подогретая жидкая
смесь представляет собой дисперсию макромолекул полимера,
растворимую в морс при температуре окружающей среды, но не-
растворимую в воде температуре выше 70 градус Цельсия.Когда по-
догретая жидкая смесь попадает в холодную воду при соответс-
твующих условиях окружающей среды, микрочастицы набухают и
растворяются, образуя клейкую массу. В пограничном слое обте-
кающего потока они образуют молекулярный раствор макромолекул,
препятствуя турбулизации потока.
А.с. N 244032: Способ снижения потерь напора при переме-
щении жидкости по трубопроводу, отличающийся тем, что с целью
достижения жидкостью свойства псевдопластичности, в нее вводят
длинноцепочный полимер, например полиакриламид, в колличестве
0,01-0,2% по весу.
Снижение гидродинамического сопротивления может быть до
за счет образования под воздействием какого-либо поля из моле-
кул самой жидкости присадок, аналогичных по свойствам полимер-
ным молекулам.
А.с. N 364493: Способ снижения гидродинамического сопро-
тивления движению тел, например, судов, путем уменьшения сил
трения в пограничном слое, отличающийся тем, что с целью упро-
щения способа и повышения его эксплуатационной надежности пу-
тем исключения подачи в пограничные слои высокомолекулярных
составов, в пограничном слое создают электромагнитное поле,
генерирующее комплексы молекул.
Применение способа по п.1 для решения внутренней задачи,
например, для снижения сопротивления жидкости в трубопроводе.
4.4.2. С к а ч о к у п л о т н е н и я.
Что такое лобовое сопротивление при обтекании твердых тел
потоком жидкости или газа - общеизвестно. Однако, кроме лобо-
вого сопротивления, при обтекании возникает так называемое
волновое сопротивление, являющееся результатом затрат энергии
на образование акустических или ударных волн. В газе, напри-
мер, ударные волны возникают при образовании скачка уплотнения
у лобовой поверхности тела при обтекании его сверхзвуковым по-
током газа. При образовании скачка уплотнения резко увеличива-
ется плотность, температура, давление и скорость вещества по-
тока; в результате могут иметь место процессы диссоциации и
ионизации молекул, сопровождающиеся мощным световым излучени-
ем. Световое излучение может сильно разогреть как газ перед
фронтомволны, так и поверхность движущегося тела.
4.4.3. Э ф ф е к т К о а н д а.
Румынский ученый Генри Коанд в 1932 году установил, что
струя жидкости, вытекающая из сопла, стремится отклониться по
направлению к стенке и при определенных условиях прилипает к
ней. Это обьясняется тем, что боковая стенка препятствует сво-
бодному поступлению воздуха с одной стороны струи, создавая
вихрь в зоне и пониженоого давления. Аналогично и поведение
струи газа. На основе этого эффекта строится одна из ветвей
пневмоники (струйной автоматики).
4.4.4. Э ф ф е к т в о р о н к и.
Если уровень жидкости в сосуде с открытой поверхностью
понизится до определенного уровня при свободном сливе жидкости
че отверстие в нижней части сосуда, то на поверхности жидкости
об водоворот (т.е. вихревое движение воды), который на ред-
кость устойчив, и нарушить его трудно.
4.5. Э ф ф е к т М а г н у с а.
Если твердый цилиндр вращется вокруг продольной оси в на-
бегающем потоке жидкости или газа, то он увлекает во вращение
прилегающие к нему слои жидкости или газа; в результате окру-
жающая среда движется отнительно цилиндра не только поступа-
тельно, но еще и вращается вокруг него. В той зоне, где нап-
равление поступательного и вращательного движения совпадают,
результирующая скорость движения окружающей средыпревосходит
скорость потока. С противоположной стороны цилиндра поток,
возникающий из-за вращения, противодействует поступательному
потоку и результирующая скорость падает. А из закона Бернулли
известно, что в тех местах, где скорость больше, давление по-
нижено и наоборот. Поэтому с разных сторонна вращающийся ци-
линдр действуют разные силы. В итоге появляется результирующая
сила, которая всегда направлена перпендикулярно образующим ци-
линдра и потоку.
Естественно, что такая же сила возникает при движении
вращающейся сферы в вязкой жидкости или газе (вспомните круче-
ны футболе, тенисе волейболе). На основе эффекта Магнуса в
свое время был построен корабль с вращающимися цилиндрами
вместо парусов. Конечно, эти цилиндры работали в качестве дви-
гателя только при боковом ветре.
В эффекте Магнуса взаимосвязаны: направление и скорость
потока, направление и величина угловой скорости, направление и
величина возникающей силы. Соответственно можно измерять поток
и угловую скорость.
Патент США N 3587327: В устройстве для измерения угловой
скорости и индикации направления вращения газовая струя разде-
ляется на две струи, каждая из которых тангенциально касается
противоположных сторон диска неподвижно закрепленного на акси-
ально вращающемся валу. Вращение диска накладывается на струи
разность давлений, величина которых пропорциональна скорости
вращения вала. В зависимости от направления вращения вала на
ту или другую струю накладывается большее относительное давле-
ние.
А.с. N 514616: Способ разделения неоднородных жидких сред