Главная · Поиск книг · Поступления книг · Top 40 · Форумы · Ссылки · Читатели

Настройка текста
Перенос строк


    Прохождения игр    
Aliens Vs Predator |#6| We walk through the tunnels
Aliens Vs Predator |#5| Unexpected meeting
Aliens Vs Predator |#4| Boss fight with the Queen
Aliens Vs Predator |#3| Escaping from the captivity of the xenomorph

Другие игры...


liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня
Rambler's Top100
Юмор - Макс Иванов Весь текст 217.15 Kb

Сборник

Предыдущая страница Следующая страница
1 ... 9 10 11 12 13 14 15  16 17 18 19
          Overpress=6 psi.  Wind velocity=140 mph.

     [5]  Severe Fire & Wind Damage
          -------------------------
          Residency structures are severely damaged.  People are blown
          around.  2nd and 3rd-degree burns suffered by most survivors.
          15% dead.  50% injured.
          Overpress=3 psi.  Wind velocity=98 mph.



----------------------------------------------------------------------------

                            - Blast Zone Radii -
                           ----------------------
                          [3 different bomb types]
____________________________________________________________________________
  ______________________   ______________________   ______________________
 |                      | |                      | |                      |
 |    -[10 KILOTONS]-   | |     -[1 MEGATON]-    | |    -[20 MEGATONS]-   |
 |----------------------| |----------------------| |----------------------|
 | Airburst - 1,980 ft  | | Airburst - 8,000 ft  | | Airburst - 17,500 ft |
 |______________________| |______________________| |______________________|
 |                      | |                      | |                      |
 |  [1]  0.5 miles      | |  [1]  2.5 miles      | |  [1]  8.75 miles     |
 |  [2]  1 mile         | |  [2]  3.75 miles     | |  [2]  14 miles       |
 |  [3]  1.75 miles     | |  [3]  6.5 miles      | |  [3]  27 miles       |
 |  [4]  2.5 miles      | |  [4]  7.75 miles     | |  [4]  31 miles       |
 |  [5]  3 miles        | |  [5]  10 miles       | |  [5]  35 miles       |
 |                      | |                      | |                      |
 |______________________| |______________________| |______________________|
____________________________________________________________________________

============================================================================


-End of section 1-


--------------------------------
  File courtesy of Outlaw Labs
--------------------------------

     II.  Nuclear Fission/Nuclear Fusion
          ------------------------------


     There are 2 types of atomic explosions that can be facilitated by U-235;
fission and fusion.  Fission, simply put, is a nuclear reaction in which an
atomic nucleus splits into fragments, usually two fragments of comparable
mass, with the evolution of approximately 100 million to several hundred
million volts of energy.  This energy is expelled explosively and violently in
the atomic bomb.  A fusion reaction is invariably started with a fission
reaction, but unlike the fission reaction, the fusion (Hydrogen) bomb derives
its power from the fusing of nuclei of various hydrogen isotopes in the
formation of helium nuclei.  Being that the bomb in this file is strictly
atomic, the other aspects of the Hydrogen Bomb will be set aside for now.

     The massive power behind the reaction in an atomic bomb arises from the
forces that hold the atom together.  These forces are akin to, but not quite
the same as, magnetism.

     Atoms are comprised of three sub-atomic particles.  Protons and neutrons
cluster together to form the nucleus (central mass) of the atom while the
electrons orbit the nucleus much like planets around a sun.  It is these
particles that determine the stability of the atom.

     Most natural elements have very stable atoms which are impossible to
split except by bombardment by particle accelerators.  For all practical
purposes, the one true element whose atoms can be split comparatively easily
is the metal Uranium.  Uranium's atoms are unusually large, henceforth, it is
hard for them to hold together firmly.  This makes Uranium-235 an exceptional
candidate for nuclear fission.

     Uranium is a heavy metal, heavier than gold, and not only does it have
the largest atoms of any natural element, the atoms that comprise Uranium have
far more neutrons than protons.  This does not enhance their capacity to
split, but it does have an important bearing on their capacity to facilitate
an explosion.

     There are two isotopes of Uranium.  Natural Uranium consists mostly of
isotope U-238, which has 92 protons and 146 neutrons (92+146=238).  Mixed with
this isotope, one will find a 0.6% accumulation of U-235, which has only 143
neutrons.  This isotope, unlike U-238, has atoms that can be split, thus it is
termed "fissionable" and useful in making atomic bombs.  Being that U-238 is
neutron-heavy, it reflects neutrons, rather than absorbing them like its
brother isotope, U-235.  (U-238 serves no function in an atomic reaction, but
its properties provide an excellent shield for the U-235 in a constructed bomb
as a neutron reflector.  This helps prevent an accidental chain reaction
between the larger U-235 mass and its `bullet' counterpart within the bomb.
Also note that while U-238 cannot facilitate a chain-reaction, it can be
neutron-saturated to produce Plutonium (Pu-239).  Plutonium is fissionable and
can be used in place of Uranium-235 {albeit, with a different model of
detonator} in an atomic bomb. [See Sections 3 & 4 of this file.])

     Both isotopes of Uranium are naturally radioactive.  Their bulky atoms
disintegrate over a period of time.  Given enough time, (over 100,000 years or
more) Uranium will eventually lose so many particles that it will turn into
the metal lead.  However, this process can be accelerated.  This process is
known as the chain reaction.  Instead of disintegrating slowly, the atoms are
forcibly split by neutrons forcing their way into the nucleus.  A U-235 atom
is so unstable that a blow from a single neutron is enough to split it and
henceforth bring on a chain reaction.  This can happen even when a critical
mass is present.  When this chain reaction occurs, the Uranium atom splits
into two smaller atoms of different elements, such as Barium and Krypton.

     When a U-235 atom splits, it gives off energy in the form of heat and
Gamma radiation, which is the most powerful form of radioactivity and the most
lethal.  When this reaction occurs, the split atom will also give off two or
three of its `spare' neutrons, which are not needed to make either Barium or
Krypton.  These spare neutrons fly out with sufficient force to split other
atoms they come in contact with.  [See chart below]  In theory, it is
necessary to split only one U-235 atom, and the neutrons from this will split
other atoms, which will split more...so on and so forth.  This progression
does not take place arithmetically, but geometrically.  All of this will
happen within a millionth of a second.

     The minimum amount to start a chain reaction as described above is known
as SuperCritical Mass.  The actual mass needed to facilitate this chain
reaction depends upon the purity of the material, but for pure U-235, it is
110 pounds (50 kilograms), but no Uranium is never quite pure, so in reality
more will be needed.

     Uranium is not the only material used for making atomic bombs.  Another
material is the element Plutonium, in its isotope Pu-239.  Plutonium is not
found naturally (except in minute traces) and is always made from Uranium.
The only way to produce Plutonium from Uranium is to process U-238 through a
nuclear reactor.  After a period of time, the intense radioactivity causes the
metal to pick up extra particles, so that more and more of its atoms turn into
Plutonium.

     Plutonium will not start a fast chain reaction by itself, but this
difficulty is overcome by having a neutron source, a highly radioactive
material that gives off neutrons faster than the Plutonium itself.  In certain
types of bombs, a mixture of the elements Beryllium and Polonium is used to
bring about this reaction.  Only a small piece is needed.  The material is not
fissionable in and of itself, but merely acts as a catalyst to the greater
reaction.



 ============================================================================


                        - Diagram of a Chain Reaction -
                        -------------------------------



                                       |
                                       |
                                       |
                                       |
    [1]------------------------------> o

                                    . o o .
                                   . o_0_o . <-----------------------[2]
                                   . o 0 o .
                                    . o o .

                                       |
                                      \|/
                                       ~

                                 . o o. .o o .
    [3]-----------------------> . o_0_o"o_0_o .
                                . o 0 o~o 0 o .
                                 . o o.".o o .
                                       |
                                  /    |    \
                                |/_    |    _\|
                                ~~     |     ~~
                                       |
                           o o         |        o o
    [4]-----------------> o_0_o        |       o_0_o <---------------[5]
                          o~0~o        |       o~0~o
                           o o )       |      ( o o
                              /        o       \
                             /        [1]       \
                            /                    \
                           /                      \
                          /                        \
                         o [1]                  [1] o
                 . o o .            . o o .            . o o .
                . o_0_o .          . o_0_o .          . o_0_o .
                . o 0 o .  <-[2]-> . o 0 o . <-[2]->  . o 0 o .
                 . o o .            . o o .            . o o .

                  /                    |                    \
                |/_                   \|/                   _\|
                ~~                     ~                     ~~

      . o o. .o o .              . o o. .o o .              . o o. .o o .
     . o_0_o"o_0_o .            . o_0_o"o_0_o .            . o_0_o"o_0_o .
     . o 0 o~o 0 o . <--[3]-->  . o 0 o~o 0 o .  <--[3]--> . o 0 o~o 0 o .
      . o o.".o o .              . o o.".o o .              . o o.".o o .
        .   |   .                  .   |   .                  .   |   .
       /    |    \                /    |    \                /    |    \
       :    |    :                :    |    :                :    |    :
       :    |    :                :    |    :                :    |    :
      \:/   |   \:/              \:/   |   \:/              \:/   |   \:/
       ~    |    ~                ~    |    ~                ~    |    ~
  [4] o o   |   o o [5]      [4] o o   |   o o [5]      [4] o o   |   o o [5]
     o_0_o  |  o_0_o            o_0_o  |  o_0_o            o_0_o  |  o_0_o
     o~0~o  |  o~0~o            o~0~o  |  o~0~o            o~0~o  |  o~0~o
      o o ) | ( o o              o o ) | ( o o              o o ) | ( o o
         /  |  \                    /  |  \                    /  |  \
        /   |   \                  /   |   \                  /   |   \
       /    |    \                /    |    \                /    |    \
      /     |     \              /     |     \              /     |     \
     /      o      \            /      o      \            /      o      \
    /      [1]      \          /      [1]      \          /      [1]      \
   o                 o        o                 o        o                 o
  [1]               [1]      [1]               [1]      [1]               [1]






 ============================================================================


                              - Diagram Outline -
                             ---------------------
Предыдущая страница Следующая страница
1 ... 9 10 11 12 13 14 15  16 17 18 19
Ваша оценка:
Комментарий:
  Подпись:
(Чтобы комментарии всегда подписывались Вашим именем, можете зарегистрироваться в Клубе читателей)
  Сайт:
 
Комментарии (10)

Реклама